Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8507, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38605071

RESUMO

While cellular metabolism was proposed to be a driving factor of the activation and differentiation of B cells and the function of the resulting antibody-secreting cells (ASCs), the study of correlations between cellular metabolism and functionalities has been difficult due to the absence of technologies enabling the parallel measurement. Herein, we performed single-cell transcriptomics and introduced a direct concurrent functional and metabolic flux quantitation of individual murine B cells. Our transcriptomic data identified lactate metabolism as dynamic in ASCs, but antibody secretion did not correlate with lactate secretion rates (LSRs). Instead, our study of all splenic B cells during an immune response linked increased lactate metabolism with acidic intracellular pH and the upregulation of apoptosis. T cell-dependent responses increased LSRs, and added TLR4 agonists affected the magnitude and boosted LSRhigh B cells in vivo, while resulting in only a few immunoglobulin-G secreting cells (IgG-SCs). Therefore, our observations indicated that LSRhigh cells were not differentiating into IgG-SCs, and were rather removed due to apoptosis.


Assuntos
Células Produtoras de Anticorpos , Linfócitos B , Animais , Camundongos , Apoptose , Imunoglobulina G/metabolismo , Lactatos/metabolismo
2.
J Vis Exp ; (205)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38526129

RESUMO

Infections, autoimmune diseases, desired and adverse immunological responses to treatment can lead to a complex and dynamic cytokine response in vivo. This response involves numerous immune cells secreting various cytokines to orchestrate the immune reaction. However, the secretion dynamics, amounts, and co-occurrence of the different cytokines by various cell subtypes remain poorly understood due to a lack of appropriate tools to study them. Here, we describe a protocol using a microfluidic droplet platform that allows the time-resolved quantitative measurement of secretion dynamics for several cytokines in parallel on the single-cell level. This is enabled by the encapsulation of individual cells into microfluidic droplets together with a multiplexed immunoassay for parallel quantification of cytokine concentrations, their immobilization for dynamic fluorescent imaging, and the analysis of the respective images to derive secreted quantities and dynamics. The protocol describes the preparation of functionalized magnetic nanoparticles, calibration experiments, cell preparation, and the encapsulation of the cells and nanoparticles into droplets for fluorescent imaging and subsequent image and data analysis using the example of lipopolysaccharide-stimulated human peripheral blood mononuclear cells. The presented platform identified distinct cytokine secretion behavior for single and co-secreting cells, characterizing the expected phenotypic heterogeneity in the measured cell sample. Furthermore, the modular nature of the assay allows its adaptation and application to study a variety of proteins, cytokines, and cell samples, potentially leading to a deeper understanding of the interplay between different immune cell types and the role of the different cytokines secreted dynamically to shape the tightly regulated immune response. These new insights could be particularly interesting in the studies of immune dysregulations or in identifying target populations in therapy and drug development.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Humanos , Leucócitos Mononucleares/metabolismo , Citocinas/metabolismo , Imunoensaio
3.
Cell Rep Methods ; 3(7): 100502, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37533643

RESUMO

Cytokines are important mediators of the immune system, and their secretion level needs to be carefully regulated, as an unbalanced activity may lead to cytokine release syndromes. Dysregulation can be induced by various factors, including immunotherapies. Therefore, the need for risk assessment during drug development has led to the introduction of cytokine release assays (CRAs). However, the current CRAs offer little insight into the heterogeneous cellular dynamics. To overcome this limitation, we developed an advanced single-cell microfluidic-based cytokine secretion platform to quantify cytokine secretion on the single-cell level dynamically. Our approach identified different dynamics, quantities, and phenotypically distinct subpopulations for each measured cytokine upon stimulation. Most interestingly, early measurements after only 1 h of stimulation revealed distinct stimulation-dependent secretion dynamics and cytokine signatures. With increased sensitivity and dynamic resolution, our platform provided insights into the secretion behavior of individual immune cells, adding crucial additional information about biological stimulation pathways to traditional CRAs.


Assuntos
Citocinas , Microfluídica
4.
Vaccine ; 41(19): 3047-3057, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37037709

RESUMO

Q fever is a highly infectious zoonosis caused by the Gram-negative bacterium Coxiella burnetii. The worldwide distribution of Q fever suggests a need for vaccines that are more efficacious, affordable, and does not induce severe adverse reactions in vaccine recipients with pre-existing immunity against Q fever. Potential Q fever vaccine antigens include lipopolysaccharide (LPS) and several C. burnetii surface proteins. Antibodies elicited by purified C. burnetii lipopolysaccharide (LPS) correlate with protection against Q fever, while antigens encoded by adenoviral vectored vaccines can induce cellular immune responses which aid clearing of intracellular pathogens. In the present study, the immunogenicity and the protection induced by adenoviral vectored constructs formulated with the addition of LPS were assessed. Multiple vaccine constructs encoding single or fusion antigens from C. burnetii were synthesised. The adenoviral vectored vaccine constructs alone elicited strong cellular immunity, but this response was not correlative with protection in mice. However, vaccination with LPS was significantly associated with lower weight loss post-bacterial challenge independent of co-administration with adenoviral vaccine constructs, supporting further vaccine development based on LPS.


Assuntos
Vacinas contra Adenovirus , Coxiella burnetii , Febre Q , Animais , Camundongos , Coxiella burnetii/genética , Febre Q/prevenção & controle , Lipopolissacarídeos , Vacinas Bacterianas/genética , Vacinação , Imunização , Adenoviridae/genética
5.
Vaccine ; 40(32): 4453-4463, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35697571

RESUMO

The clinical development of the meningococcal vaccine, 4CMenB, included 2 doses in vaccine-naïve adolescents, which was considered unlikely to be cost-effective for implementation. Theoretically, priming with 4CMenB in early childhood might drive strong immune responses after only a single booster dose in adolescents and reduce programmatic costs. To address this question, children over 11 years old who took part in previous trials involving the administration of 3-5 doses of 4CMenB at infant/preschool age from 2006 were recruited into a post licensure single-centre trial, and were divided into two groups: those who received their last dose at 12 months old (infant group) and those who received their last dose at 3 years old (infant + preschool group). Naïve age-matched controls were randomised to receive one (adolescent 1 group) or two doses at days 0 and 28 (adolescent 2 group) of 4CMenB. Serum bactericidal antibody (SBA) assays using human complement were performed against three reference strains prior to vaccination, and at 1, 6 and 12 months. Previous vaccination was associated with a higher response to a single booster dose at 11 years of age, one-month post-vaccination, when compared with a single dose in naïve age-matched controls. At day 180, the highest responses were observed in participants in the infant + preschool group against strain 5/99 (GMT 316.1 [CI 158.4 to 630.8]), as compared with naïve adolescents who received two doses (GMTs 84.5 [CI 57.7 to 123.6]). When the last dose was received at 12-months of age, responses to a single adolescent dose were not as robust (GMT 61.1 [CI 14.8 to 252.4] to strain 5/99). This descriptive study indicates that the highest SBA responses after a single dose in adolescence were observed in participants who received a preschool dose, suggesting that B cell memory responses are not sufficiently primed at less than 12 months of age. Trial registration EudraCT 2017-004732-11, ISRCTN16774163.


Assuntos
Imunogenicidade da Vacina , Vacinas Meningocócicas , Adolescente , Anticorpos Antibacterianos , Criança , Análise Custo-Benefício , Humanos , Infecções Meningocócicas/prevenção & controle , Vacinas Meningocócicas/administração & dosagem , Vacinas Meningocócicas/imunologia , Vacinação
6.
Cell Biosci ; 12(1): 86, 2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690803

RESUMO

BACKGROUND: Disease caused by the capsular group B meningococcus (MenB) is the leading cause of infectious death in UK infants. A novel adenovirus-based vaccine encoding the MenB factor H binding protein (fHbp) with an N-terminal dual signal sequence induces high titres of protective antibody after a single dose in mice. A panel of N-terminal signal sequence variants were created to assess the contribution of components of this sequence to transgene expression kinetics of the encoded antigen from mammalian cells and the resultant effect on immunogenicity of fHbp. RESULTS: The full-length signal sequence (FL SS) resulted in superior early antigen expression compared with the panel of variants, as measured by flow cytometry and confocal imaging, and supported higher bactericidal antibody levels against the expressed antigen in mouse sera < 6 weeks post-immunisation than the licensed four component MenB vaccine. The FL SS also significantly increased antigen-specific T cell responses against other adenovirus-encoded bacterial antigens in mice. CONCLUSIONS: These findings demonstrate that the FL SS enhances immunogenicity of the encoded antigen, supporting its inclusion in other viral vectored bacterial antigen transgenes.

7.
Nat Commun ; 13(1): 1251, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273178

RESUMO

The trajectories of acquired immunity to severe acute respiratory syndrome coronavirus 2 infection are not fully understood. We present a detailed longitudinal cohort study of UK healthcare workers prior to vaccination, presenting April-June 2020 with asymptomatic or symptomatic infection. Here we show a highly variable range of responses, some of which (T cell interferon-gamma ELISpot, N-specific antibody) wane over time, while others (spike-specific antibody, B cell memory ELISpot) are stable. We use integrative analysis and a machine-learning approach (SIMON - Sequential Iterative Modeling OverNight) to explore this heterogeneity. We identify a subgroup of participants with higher antibody responses and interferon-gamma ELISpot T cell responses, and a robust trajectory for longer term immunity associates with higher levels of neutralising antibodies against the infecting (Victoria) strain and also against variants B.1.1.7 (alpha) and B.1.351 (beta). These variable trajectories following early priming may define subsequent protection from severe disease from novel variants.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Antivirais , Humanos , Estudos Longitudinais , Glicoproteína da Espícula de Coronavírus
8.
mSphere ; 7(1): e0067421, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35080470

RESUMO

Neisseria meningitidis outer membrane vesicle (OMV) vaccines are safe and provide strain-specific protection against invasive meningococcal disease (IMD) primarily by inducing serum bactericidal antibodies against the outer membrane proteins (OMP). To design broader coverage vaccines, knowledge of the immunogenicity of all the antigens contained in OMVs is needed. In a Phase I clinical trial, an investigational meningococcal OMV vaccine, MenPF1, made from a meningococcus genetically modified to constitutively express the iron-regulated FetA induced bactericidal responses to both the PorA and the FetA antigen present in the OMP. Using peripheral blood mononuclear cells collected from this trial, we analyzed the kinetics of and relationships between IgG, IgA, and IgM B cell responses against recombinant PorA and FetA, including (i) antibody-secreting cells, (ii) memory B cells, and (iii) functional antibody responses (opsonophagocytic and bactericidal activities). Following MenPF1vaccination, PorA-specific IgG secreting cell responses were detected in up to 77% of participants and FetA-specific responses in up to 36%. Memory B cell responses to the vaccine were low or absent and mainly detected in participants who had evidence of preexisting immunity (P = 0.0069). Similarly, FetA-specific antibody titers and bactericidal activity increased in participants with preexisting immunity and is consistent with the idea that immune responses are elicited to minor antigens during asymptomatic Neisseria carriage, which can be boosted by OMV vaccines. IMPORTANCE Neisseria meningitidis outer membrane vesicles (OMV) are a component of the capsular group B meningococcal vaccine 4CMenB (Bexsero) and have been shown to induce 30% efficacy against gonococcal infection. They are composed of multiple antigens and are considered an interesting delivery platform for vaccines against several bacterial diseases. However, the protective antibody response after two or three doses of OMV-based meningococcal vaccines appears short-lived. We explored the B cell response induced to a dominant and a subdominant antigen in a meningococcal OMV vaccine in a clinical trial and showed that immune responses are elicited to minor antigens. However, memory B cell responses to the OMV were low or absent and mainly detected in participants who had evidence of preexisting immunity against the antigens. Failure to induce a strong B cell response may be linked with the low persistence of protective responses.


Assuntos
Infecções Meningocócicas , Vacinas Meningocócicas , Neisseria meningitidis , Anticorpos Antibacterianos , Proteínas da Membrana Bacteriana Externa , Vacinas Bacterianas , Humanos , Imunoglobulina G , Leucócitos Mononucleares , Infecções Meningocócicas/prevenção & controle
9.
Cell ; 184(23): 5699-5714.e11, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34735795

RESUMO

Extension of the interval between vaccine doses for the BNT162b2 mRNA vaccine was introduced in the United Kingdom to accelerate population coverage with a single dose. At this time, trial data were lacking, and we addressed this in a study of United Kingdom healthcare workers. The first vaccine dose induced protection from infection from the circulating alpha (B.1.1.7) variant over several weeks. In a substudy of 589 individuals, we show that this single dose induces severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibody (NAb) responses and a sustained B and T cell response to the spike protein. NAb levels were higher after the extended dosing interval (6-14 weeks) compared with the conventional 3- to 4-week regimen, accompanied by enrichment of CD4+ T cells expressing interleukin-2 (IL-2). Prior SARS-CoV-2 infection amplified and accelerated the response. These data on dynamic cellular and humoral responses indicate that extension of the dosing interval is an effective immunogenic protocol.


Assuntos
Vacinas contra COVID-19/imunologia , Vacinas Sintéticas/imunologia , Adulto , Idoso , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacina BNT162 , COVID-19/sangue , COVID-19/imunologia , COVID-19/virologia , Apresentação Cruzada/imunologia , Relação Dose-Resposta Imunológica , Etnicidade , Feminino , Humanos , Imunidade , Imunoglobulina G/imunologia , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Padrões de Referência , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Resultado do Tratamento , Adulto Jovem , Vacinas de mRNA
11.
Nat Med ; 27(2): 279-288, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33335322

RESUMO

More than 190 vaccines are currently in development to prevent infection by the novel severe acute respiratory syndrome coronavirus 2. Animal studies suggest that while neutralizing antibodies against the viral spike protein may correlate with protection, additional antibody functions may also be important in preventing infection. Previously, we reported early immunogenicity and safety outcomes of a viral vector coronavirus vaccine, ChAdOx1 nCoV-19 (AZD1222), in a single-blinded phase 1/2 randomized controlled trial of healthy adults aged 18-55 years ( NCT04324606 ). Now we describe safety and exploratory humoral and cellular immunogenicity of the vaccine, from subgroups of volunteers in that trial, who were subsequently allocated to receive a homologous full-dose (SD/SD D56; n = 20) or half-dose (SD/LD D56; n = 32) ChAdOx1 booster vaccine 56 d following prime vaccination. Previously reported immunogenicity data from the open-label 28-d interval prime-boost group (SD/SD D28; n = 10) are also presented to facilitate comparison. Additionally, we describe volunteers boosted with the comparator vaccine (MenACWY; n = 10). In this interim report, we demonstrate that a booster dose of ChAdOx1 nCoV-19 is safe and better tolerated than priming doses. Using a systems serology approach we also demonstrate that anti-spike neutralizing antibody titers, as well as Fc-mediated functional antibody responses, including antibody-dependent neutrophil/monocyte phagocytosis, complement activation and natural killer cell activation, are substantially enhanced by a booster dose of vaccine. A booster dose of vaccine induced stronger antibody responses than a dose-sparing half-dose boost, although the magnitude of T cell responses did not increase with either boost dose. These data support the two-dose vaccine regime that is now being evaluated in phase 3 clinical trials.


Assuntos
Formação de Anticorpos/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Imunização Secundária , SARS-CoV-2/imunologia , Adolescente , Adulto , Anticorpos Neutralizantes/imunologia , ChAdOx1 nCoV-19 , Relação Dose-Resposta a Droga , Vetores Genéticos/imunologia , Humanos , Pessoa de Meia-Idade , Glicoproteína da Espícula de Coronavírus/imunologia , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...